COMBINATORICA

Bolyai Society – Springer-Verlag

ON SUBSETS WITH SMALL PRODUCT IN TORSION-FREE GROUPS

Y. O. HAMIDOUNE*, A. S. LLADÓ † and O. SERRA †

Received October 13, 1997 Revised August 18, 1998

Let G be a nonabelian torsion-free group. Let C be a finite generating subset of G such that $1 \in C$. We prove that, for all subsets B of G with $|B| \ge 4$, we have $|BC| \ge |B| + |C| + 1$.

In particular, a finite subset X with cardinality $k \ge 4$ satisfies the inequality $|X^2| \le 2|X|$ if and only if there are elements $x, r \in G$, such that the following two conditions hold:

- (i) xr = rx.
- (ii) $Xx = \{1, r, \dots, r^k\} \setminus \{c\}$ where $c \in \{1, r\}$.

1. Introduction

Throughout the paper G denotes a torsion-free group written multiplicatively. A subset of the form $\{ar^i|1\leq i\leq m\}$ for some $a,r\in G$ and $m\in\mathbb{N}$ is said to be a left progression of ratio r or a left r-progression. Similarly, a set of the form $\{r^ib|1\leq i\leq m\}$ for some $b\in G$ is a right r-progression. A set which is both a left and a right r-progression is simply a progression. Notice that a left progression containing 1 is a progression.

Given two finite sets $B, C \subset G$, we write $BC = \{bc | b \in B, c \in C\}$. One of the basic problems in Additive Theory consists in giving lower bounds for |BC| in terms of the cardinalities of the two sets B and C. The *inverse problem* consists in deriving structural properties of the two sets from the knowledge of a bound for the cardinality of their product. There are several important results of this kind for torsion free groups.

When G is cyclic, the (3k-4)-Theorem of Freiman [2, 9] states that

$$|B^2| \ge 3|B| - 3,$$

unless B is contained in a progression of size at most 2|B|-2. The validity of this result for abelian torsion-free groups follows by results in [2].

Mathematics Subject Classification (1991): 20D60, 11B75

^{*} Supported by the Spanish Ministry of Education under grant SAB95-0573.

[†] Supported by the Spanish Research Council, CICYT, under project TIC97–0963.

The (3k-4)-Theorem was generalized to the product of distinct sets by Freiman [11] and by Lev and Smelianski [7]. For abelian torsion-free groups with dimension greater than 1, good lower bounds for |BC| are due to Ruzsa [10].

Non abelian torsion-free groups are good candidates for the validity of the (3k-4)-Theorem, but this question is still open. Only few less precise results are known in the non abelian case. By a result of Kemperman [6],

$$|BC| \ge |B| + |C| - 1.$$

In [1] Brailovsky and Freiman proved that, for $|B|, |C| \ge 2$,

$$|BC| \ge |B| + |C|$$

unless there are $b \in B^{-1}$ and $c \in C^{-1}$ such that both bB and Cc are progressions with the same ratio.

Using a different approach, one of the authors obtained in [4] a common generalization of the last result and Vosper's Theorem [12, 8].

Our main result is the following:

Let G be a nonabelian torsion-free group. Let C be a generating subset of G such that $1 \in C$. Then, for all subsets B such that $|B| \ge 4$,

$$|BC| \ge |B| + |C| + 1.$$

In particular, a finite subset X with cardinality $k \ge 4$ satisfies the inequality $|X^2| \le 2|X|$ if and only if there are elements $x, r \in G$, such that the following two conditions hold:

- (i) xr = rx.
- (ii) $Xx = \{1, r, \dots, r^k\} \setminus \{c\}$ where $c \in \{1, r\}$.

2. Preliminaries

Let G be an infinite group and let $1 \in C$ be a finite generating subset of G. For $X \subset G$, we shall write

$$\partial X = XC \setminus X$$
.

We write $\partial_C X$ if the reference to C is not clear from the context. The kisoperimetric number of C is

$$\kappa_k(C) = \min\{|\partial X| : X \subset G, k \le |X| < \infty\}.$$

A finite subset X of G is a k-critical set of C if $|X| \ge k$ and $|\partial X| = \kappa_k(C)$. A k-atom of C is a k-critical set of C with minimal cardinality. We denote by $\alpha_k(C)$ the cardinality of a k-atom of C.

The following lemma is a special case of a result proved in [4]. We include here a short proof for the benefit of the reader.

Lemma 1. ([4]) Let $1 \in C$ be a finite generating subset of a torsion-free group G. Let F be a k-critical set and A a k-atom of $C \subset G$.

Then either $A \subset F$ or $|A \cap F| \leq k-1$.

In particular, for each $x \in G \setminus \{1\}$, we have $|A \cap xA| \le k-1$.

Proof. We write $\varepsilon X = G \setminus (X \cup \partial X)$. Suppose that $|A \cap F| \ge k$ and $A \not\subset F$. Since A is a k-atom, we have $|\partial(A \cap F)| > |\partial A|$. Therefore,

 $|\partial A \cap F| + |\partial A \cap \partial F| + |\partial A \cap \varepsilon F| = |\partial A| < |\partial (A \cap F)| \le |A \cap \partial F| + |\partial A \cap F| + |\partial A \cap \partial F|,$ which imply

$$(1) |\partial A \cap \varepsilon F| < |A \cap \partial F|.$$

On the other hand, since F is a k-critical set, we have $|\partial F| \leq |\partial (A \cup F)|$, which leads to

$$|\partial F \cap A| + |\partial F \cap \partial A| + |\partial F \cap \varepsilon A| = |\partial F| \le |\partial (F \cup A)| \le |\varepsilon F \cap \partial A| + |\partial F \cap \varepsilon A| + |\partial F \cap \partial A|.$$

Hence, $|\partial F \cap A| \leq |\varepsilon F \cap \partial A|$ contradicting (1).

To prove the second part of the Lemma, note that xA is also a k-atom, for each $x \in G$. In particular, if $|A \cap xA| \ge k$ for some $x \in G \setminus \{1\}$, we must have A = xA, contradicting $|A| < \infty$.

The Lemma above provides a simple proof of the Cauchy-Davenport inequality for torsion-free groups deduced in [1] from a result by Kempermann [6].

Corollary 2. ([1]) Let G be a torsion-free group and let B,C be finite nonempty subsets of G. Then $|BC| \ge |B| + |C| - 1$.

Proof. By exchanging C by Cc^{-1} for some $c \in C$ if necessary, we may assume that $1 \in C$. Let A be a 1-atom of C such that $1 \in A$. If there is an element $x \in A \setminus \{1\}$, we have $|xA \cap A| \ge 1$, contradicting Lemma 1. Therefore $A = \{1\}$. Now $|BC| - |B| \ge \kappa_1(C) = |AC| - |A| = |C| - 1$.

The following easy lemma will be needed.

Lemma 3. Let $1 \in C$ be a finite generating subset of a torsion-free group G. Let B be a finite subset generating a proper subgroup of G and $|B| \ge 3$. Then

$$|BC| \ge |B| + |C| + 1.$$

Proof. Partition $C = C_1 \cup C_2 \cup \cdots \cup C_j$, where each C_i is the nonempty intersection of C with some right coset of the subgroup generated by B. Necessarily $j \ge 2$.

By Corollary 2,
$$|BC| \ge \sum_{i=1}^{j} (|C_i| + (|B| - 1)) = |C| + j(|B| - 1) \ge |B| + |C| + 1$$
.

The following property of k-atoms will be often used.

Lemma 4. Let $1 \in C$ be a finite generating subset of a torsion-free group G. Let A be a k-atom of C such that $|A| \ge k+1$. Then

(2)
$$|zC^{-1} \cap A| \ge 2 \quad \forall z \in AC.$$

Moreover

$$(3) |A|(|C|-2) \ge 2\kappa_k(C)$$

Proof. Note that, as $1 \in C$, we have $|zC^{-1} \cap A| \ge 1$ for all $z \in AC = A \cup \partial A$.

Suppose $|zC^{-1} \cap A| = 1$ for some $z \in A$. Then $\partial(A \setminus \{z\}) \subset \partial A$ contradicting the minimality of A. On the other hand, if $zC^{-1} \cap A = \{u\}$ for some $z \in \partial A$, then $\partial(A \setminus \{u\}) \subset (\partial A \setminus \{z\}) \cup \{u\}$, contradicting again the definition of a k-atom. This proves (2).

Set $\mu(A) = \sum_{a \in A} |aC \cap A|$. We clearly have

$$|A||C| = \mu(A) + \sum_{a \in A} |aC \setminus A| = \mu(A) + \sum_{z \in \partial(A)} |zC^{-1} \cap A|.$$

It follows by (2) that

$$|A||C| \ge \mu(A) + 2\kappa_k(C).$$

Now (3) follows since, again by (2),
$$\mu(A) = \sum_{a \in A} |aC^{-1} \cap A| \ge 2|A|$$
.

We need the following lemma.

Lemma 5. ([4]) Let C be a finite generating subset of a torsion-free group G such that $|C| \ge 3$ and $1 \in C$. Let A be a 2-atom of C. Then $|A| \le |C| - 1$.

Proof. We may assume that $1 \in A$. If |A| = 2 there is nothing to prove. Suppose |A| > 2.

By Lemma 4, for each $x \in A$, we must have $xC^{-1} \cap A \neq \{x\}$. Therefore we can define a map $f: A \to C \setminus \{1\}$ such that $x(f(x))^{-1} \in A$ for each $x \in A$.

Let us show that such a map is injective. Indeed, f(x) = f(y) = c and $x \neq y$ would imply $\{x,y\} \subseteq Ac^{-1} \cap A$ and therefore $\{x,y,xc,yc\} \subset A$. Then, for $r = xy^{-1}$, we would have $\{x,xc\} \subset rA \cap A$, contradicting Lemma 1.

The following consequence of Lemma 5 is basically equivalent to the result of Brailovski and Freiman mentioned in the introduction, cf. [1, 4].

Corollary 6. Let G be a torsion-free group generated by a finite subset C containing 1 which is not a progression. Then $\kappa_2(C) \ge |C|$.

Proof. Suppose the contrary and choose a counter-example with minimal |C|.

Let A be a 2-atom of C containing 1.

Suppose first that $|A| \ge 3$. By Lemma 3, A generates G.

Since $|C^{-1}A^{-1}| = |AC| \le |C| + |A| - 1$, we have $\kappa_2(A^{-1}) \le |A| - 1$. Note that A can not be a progression, since otherwise there is $r \in A \setminus \{1\}$ such that $|rA \cap A| \ge 2$, contradicting Lemma 1. By Lemma 5, $|A| \le |C| - 1$, contradicting the minimality of |C|.

Hence, |A|=2. Set $A=\{1,r\}$. Partition $C=C_1\cup C_2\cup \cdots \cup C_j$, where each C_i is a maximal right r-progression. The maximality implies that $\{1,r\}C_i\cap\{1,r\}C_j=\emptyset$, for $i\neq j$. Now we have $\kappa_2(C)=|AC|-2=(|C_1|+1)+\cdots+(|C_j|+1)-2=|C|+j-2\geq |C|$, a contradiction.

3. The case |C|=3

We first consider the situation for generating sets of cardinality 3.

Lemma 7. Let G be a nonabelian torsion-free group and let $C = \{1, x, y\}$ be a generating set of G such that $\kappa_3(C) \leq |C|$. Let A be a 3-atom of C.

Then |A|=3.

Moreover exactly one of the following conditions holds

- (i) y = xyx;
- (ii) x = yxy;
- (iii) $x^2 = y^2$ and there is $a \in G$ such that A = aC.

Proof. First note that, in a torsion-free group, at most one of the relations can hold. Indeed, y = xyx and $x^2 = y^2$ imply $y^2 = xyxxyx = y^6$. On the other hand, if y = xyx and x = yxy, then $y = yxy^2x$ and therefore $x^{-2} = y^2$. Hence, $x^{-2} = y^2 = xyx^2yx = x^2$.

We shall now prove that one of the relations is satisfied.

Since C generates a nonabelian group, C is not a progression. By Corollary 6, $\kappa_2(C) \ge |C|$.

Let us show that $\alpha_3(C) = 3$.

Let A be a 3-atom of C containing 1.

Suppose that $|A| \ge 4$. The (3) implies $|A| \ge 6$. By (2), for every $a \in A$, there are $s_a, t_a \in C^{-1} \setminus \{1\}$ such that $A_a = \{a, as_a, as_at_a\} \subset A$. Since C is not a progression, we have $s_at_a \ne 1$. Therefore $|A_a| = 3$. Since $|C \setminus \{1\}| = 2$, there are four choices for the ordered pair (s_a, t_a) . Since |A| > 4, there are two distinct elements $a, b \in A$ such that $s_a = s_b$ and $t_a = t_b$. Now $(ba^{-1})A \cap A \supset A_b$, contradicting Lemma 1.

Hence, |A| = 3.

Let us show that $|A \cap Az| \leq 1$ for each $z \in G \setminus \{1\}$. By Corollary 6, if $|\{1,z\}A^{-1}| \leq |A|+1$ then A is a z-progression. It follows that A generates a proper (cyclic) subgroup of G. By Lemma 3, $|AC| \geq |A|+|C|+1$, a contradiction.

In particular, $|A \cap Ax| \le 1$ and $|A \cap Ay| \le 1$ and $|Ax \cap Ay| \le 1$. Now,

$$6 = |AC| = 9 - |A \cap Ax| - |A \cap Ay| - |Ax \cap Ay| + |A \cap Ax \cap Ay|.$$

It follows that $|A \cap Ax \cap Ay| = 0$ and $|A \cap Ax| = |A \cap Ay| = |Ax \cap Ay| = 1$. Therefore we have one of the following cases:

- (i) $A = u\{1, x, xy\}$. Clearly $\{1, x, xy\}$ is a 3-atom. Now $\{x, x^2, xyx\} \cap \{y, xy, xy^2\} \neq \emptyset$. Necessarily xyx = y.
 - (ii) $A = u\{1, y, yx\}$. We obtain similarly yxy = x.
- (iii) $A = u\{1, x, y\}$. Clearly $\{1, x, y\}$ is a 3- atom. Now $\{x, x^2, yx\} \cap \{y, xy, y^2\} \neq \emptyset$. Hence we must have $x^2 = y^2$.

This completes the proof.

Lemma 8. Let G be a nonabelian torsion-free group and let $C = \{1, x, y\}$ be a generating set of G. Then $\kappa_4(C) \ge |C| + 1$,

Proof. Assume on the contrary that $\kappa_4(C) \leq |C|$.

Since $\kappa_3(C) \leq \kappa_4(C)$, we may assume by Lemma 7 that either y = xyx or x = yxy or $x^2 = y^2$.

If x = yxy (resp. x = yxy), then $(yx^{-1})^2 = (x^{-1})^2$ (resp. $(xy^{-1})^2 = (y^{-1})^2$). Since $\kappa_4(C) = \kappa_4(Cx^{-1}) = \kappa_4(Cy^{-1})$, we may assume that $x^2 = y^2$.

Let A be a 4-atom of C.

Let us first prove that there is $a \in A$ such that $aC^{-1} \cap A = \{a\}$. Assuming the contrary, we can form a sequence $\{a_i, i \in \mathbb{N}\}$ of elements in A such that $a_{i+1}(a_i)^{-1} \in C \setminus \{1\}$ for each $i \geq 1$. Since A is finite, there are indices j and $m \geq 2$ such that $a_{j+m} = a_j$. Hence, there is a sequence c_1, \ldots, c_m of elements in $\{x,y\}$ such that $c_1 \cdots c_m = 1$. Since both x^2 and y^2 belong to the center of the group, the above relation implies a relation of the form $x^s y(xy)^r = 1$, where $s,r \geq 0$. It follows that $y(xy)^r x^s = 1$. By multiplying these two relations, we get $1 = x^s y(xy)^r y(xy)^r x^s = x^{2(s+2r+1)}$, contradicting that G is torsion free.

Hence, there is $a \in A$ such that $aC^{-1} \cap A = \{a\}$. Let $A' = A \setminus \{a\}$. By the choice of a, we have $\partial A' \subset \partial A$. Since A is a 4-atom, we must have |A'| = 3. As $\kappa_3(C) = \kappa_4(C)$, A' is a 3-atom of C. By Lemma 7, we may assume A' = C and $A = \{1, x, y, a\}$.

Suppose that $1 \in aC$. We may assume $a = x^{-1}$. Thus, $x^{-1}y \in \partial(A) = \{xy, yx, y^2\}$. This forces $x^{-1}y = yx$ which has been shown to be a relation incompatible with $x^2 = y^2$.

If $1 \notin aC$ then $C^{-1} \cap A = \{1\}$. As argued before, $A \setminus \{1\}$ is a 3-atom of C. By Lemma 7, $A \setminus \{1\} = vC$ for some $v \in G$. Thus, $v\{1, x, y\} = \{x, y, a\}$ and therefore $v \in \{x, y, a\}$. The only possibility is v = a. This forces $a\{x, y\} = \{x, y\}$, a contradiction. The proof is complete.

4. The main result

Let us start with the following lemma.

Lemma 9. Let C be a generating subset of a nonabelian torsion free group G such that $1 \in C$ and $|C| \ge 4$. If $\kappa_2(C) \le |C|$, then

$$\alpha_2(C) = 2.$$

Moreover, C is the union of two right progressions.

Proof. Suppose the result false and choose a counterexample with minimal |C|. Let A be a 2-atom of C containing 1.

By Lemma 5, $|A| \leq |C| - 1$. By Lemma 3, A generates the whole group G. The inequality $|C^{-1}A^{-1}| = |AC| \leq |A| + |C|$ implies that $\kappa_2(A^{-1}) \leq \kappa_4(A^{-1}) \leq |A|$. Hence, by the minimality of |C|, the 2-atoms of A^{-1} have cardinality 2.

Let $A' = \{1, r\}$ be a 2-atom of A^{-1} . From $|A'A^{-1}| \le 2 + |A|$ it follows that $A^{-1} = \{1, r^{-1}, \dots, r^{-k}\} \cup \{y^{-1}, r^{-1}y^{-1}, \dots, r^{-m}y^{-1}\}$ for some nonnegative integers k, m with k + m + 2 = |A| and $y, r \in G$. We may assume that $k \ge m$.

By Lemma 8, we have $|A| \ge 4$. Observe that $|A \cap rA| \ge k$ and $|A \cap y^{-1}A| \ge m+1$. Hence, either $|A \cap rA| \ge 2$ or $|A \cap y^{-1}A| \ge 2$, contradicting Lemma 1.

Hence, |A|=2.

Now, if $A = \{1, r\}$, then $|AC| \le 2 + |C|$ implies that C is the union of at most two right r-progressions. Since G is nonabelian, C can not be a progression.

Theorem 10. Let C be a finite generating subset of a nonabelian torsion-free group G such that $1 \in C$ and $|C| \ge 4$. Then

$$\kappa_3(C) \ge |C| + 1.$$

Proof. Suppose the contrary and choose a counterexample with minimal |C|.

Let A be a 3-atom of C containing 1.

We will show that our assumption implies very tight conditions on the structure of both sets, A and C, from which we can easily derive a contradiction.

We have

$$|AC| \le |A| + |C|$$

By Lemma 3, A generates G. Since $|C^{-1}A^{-1}| = |AC| \le |A| + |C|$, we have $\kappa_4(A^{-1}) \le |A|$. By Lemma 8, we have $|A| \ge 4$. It follows that A^{-1} is also a counterexample. By the choice of C, we have $|C| \le |A|$.

On the other hand, we have $\kappa_2(A^{-1}) \le \kappa_4(A^{-1}) \le |A|$. By Lemma 9, A is the union of two left v-progressions for some $v \in G$, say $\{1, v, ..., v^k\}$ and $z\{1, v, ..., v^m\}$.

We must have $|A| \le 5$, since otherwise either $|A \cap vA| \ge 3$ or $|A \cap z^{-1}A| \ge 3$, contradicting Lemma 1. Hence,

(6)
$$4 \le |C| \le |A| \le 5.$$

By Lemma 9, C is the union of two right x-progressions for some $x \in G \setminus \{1\}$, say $C = C_1 \cup C_2$. We may assume $C_1 \subset \{1, x, x^2, x^3\}$ and $C_2 \subset \{1, x\}y$ for some $y \in G \setminus \{1\}$. We have $G = \langle x, y \rangle$ and $y \notin \langle x \rangle$.

Partition $A = A_1 \cup A_2 \cup \cdots \cup A_j$, where each A_i is the nonempty intersection of A with some left $\langle x \rangle$ -coset. Without lost of generality we may assume $1 \in A_1$ and $|A_1| \ge |A_i|$, $i \ge 2$.

Since A generates G, we have $j \ge 2$. Let us show that j = 2. We have

$$|A| + |C| \ge |AC| \ge |AC_1| \ge |A| + j(|C_1| - 1).$$

Therefore, since $4 \le |C| \le 5$ and $|C_1| \ge |C_2|$, either j=2 or $|C_1| = |C_2| = 2$. In the latter case, $C_2 = C_1 y$. The atom $A \subset AC_1$ is not a progression since it generates G. Therefore, by Corollary 6, $|AC| = |AC_1\{1,y\}| \ge |AC_1| + 2 \ge |A| + j + 2$ and we also have j=2.

Let us show that both A_1 and A_2 are left x-progressions.

Suppose the contrary. We must have $|C_1| > |C_2|$, since otherwise $|AC| = |AC_1\{1,y\}| \ge |AC_1| + 2 \ge |A| + 2|C_1| + 1$, a contradiction. Therefore, $|C_1| = 3$. Using Corollary 6 again, $|AC| \ge |AC_1| = |A_1C_1| + |A_2C_1| \ge |A| + 2|C_1| - 1$, a contradiction.

We may therefore assume that $A_1 \subset \{1, x, x^2, x^3\}$ and $A_2 \subset v\{1, x\}$ with $G = \langle x, v \rangle$ and $v \notin \langle x \rangle$. Note that $|A_1| \leq 3$ since otherwise $|A \cap xA| \geq 3$ contradicting Lemma 1. Also, we must have $|C_1| \leq 3$ since otherwise $|AC| \geq |AC_1| = |A| + 2|C_1| - 2 > |A| + |C|$.

By (2), for each $z \in AC$ we have $|zC^{-1} \cap A| \ge 2$.

By taking z=1 we get $2\leq |C^{-1}\cap A|=|C_1^{-1}\cap A_1|+|C_2^{-1}\cap A_2|=1+|C_2^{-1}\cap A_2|,$ which implies

$$|C_2^{-1} \cap A_2| \ge 1.$$

By taking z=y we get $2\leq |yC^{-1}\cap A|=|yC_1^{-1}\cap A_2|+|yC_2^{-1}\cap A_1|=|yC_1^{-1}\cap A_2|+1$, which implies

$$|yC_1^{-1} \cap A_2| \ge 1.$$

Inequality (7) implies either $y^{-1} \in A_2$ or $y^{-1}x^{-1} \in A_2$.

Suppose that $y^{-1} \in A_2 \subset AC$. Then $2 \leq |y^{-1}C^{-1} \cap A| = |y^{-1}C_1^{-1} \cap A_2| + |y^{-1}C_2^{-1} \cap A_1|$. It is not difficult to check that all the possibilities reduce to the following: either $A_2 = y^{-1}\{1, x^{-1}\}$ or $y^2 \in \{x^{-2}, x^{-3}\}$. On the other hand, (8) implies $1 \leq |yC_1^{-1} \cap A_2| \leq |y^2\{1, x^{-1}, x^{-2}\} \cap \{x^{-1}, 1, x\}|$. Therefore we must

have $A_2 = y^{-1}\{x^{-1},1\}$. Moreover, in this case we must also have $y^2 = x^2 \in C_1$. Then it can be easily checked that $|(xy)^{-1}C^{-1} \cap A| = 1$, contradicting (2) (to check that $(xy)^{-2} \neq x^2$ we can proceed as follows: $(xy)^{-2}x^{-2} = 1$ implies $1 = x^{-3}(y^{-1}x^{-1}y^{-1})(y^{-1}x^{-1}y^{-1})x^{-3} = x^{-12}$.)

Suppose now that $y^{-1} \notin A_2$. By (7) we must have $y^{-1}x^{-1} \in A_2$. By arguments similar to the ones in the previous case, (8) now leads to $A_2 = y^{-1}\{x^{-1}, x^{-2}\}$ and $y^2 = x^{-2}$. In particular, we have $y \in A$. But then $|y^2C^{-1} \cap A| = 1$, contradicting again (2). This completes the proof.

Theorem 10 can be reformulated as follows.

Corollary 11. Let C be a finite generating subset of a nonabelian torsion-free group G such that $1 \in C$ and $|C| \ge 4$. Then for all $B \subset G$ with $|B| \ge 3$,

$$|BC| \ge |B| + |C| + 1.$$

Theorem 10 allows us to deduce an inverse Theorem for subsets A, B with $|AB| \leq |A| + |B|$ in a torsion-free group. We shall do this only when A = B. Let us introduce a definition. A subset A of a group G is said to be an almost progression with ratio r if there is an element $x \in G$ such that $B \cup \{x\}$ is an r-progression. According to this definition, a progression is an almost progression. If B is not a progression, x is the hole of the almost progression.

An almost progression A such that $|A^2| = 2|A|$ is obtained from a progression by removing its second element. This is an easy exercise for infinite cyclic groups. It is proved for groups with a prime order in [5]. We give here a proof of the following slightly more general statement.

Lemma 12. Let G be an abelian torsion-free group. Let X and Y be finite subsets of G such that $|X|, |Y| \ge 4$. Then $|XY| \le |Y| + |X|$ holds only if X and Y are almost progressions with a common ratio r. Moreover, if none of X and Y are progressions, then they both are almost progressions with a hole in the second position with respect to the same ratio.

Proof. The group G, which we may assume to be generated by $X \cup Y$, is linearly orderable. We may assume that $1 \in X \cap Y$.

We first note the following remark: Let A, B be finite subsets of G such that $|AB| \le |A| + |B|$ and let $A' = A \setminus \{\max A\} \ne \emptyset$. As $(\max A)(\max B) \in AB \setminus A'B$, we have $|A'B| \le |A'| + |B|$. Similarly, $|A''B| \le |A''| + |B|$ for $A'' = A \setminus \{\min A\}$.

Let $x_0 < x_1 < \ldots < x_{k-1}$ be the elements of X and set $r = \min\{x_i x_{i-1}^{-1}, 1 \le i < k\}$. We may assume that $\{1, r\} \subset X$. By the above remark, we have $|\{1, r\}Y| \le 2 + |Y|$. Hence, Y is the union of at most two r-progressions, say $Y = Y_1 \cup Y_2$ with $\{r, r^{-1}\}Y_1 \cap Y_2 = \emptyset$.

Let $X = X_1 \cup ... \cup X_j$ be a partition of X into maximal r-progressions. By the choice of r we have $(\max X_i)r < \min X_{i+1}$ for $1 \le i < j$. We consider two cases.

Case 1. X is an r-progression. By Lemma 3, G is a cyclic group. If Y is also an r-progression there is nothing to prove. Otherwise, we have $|XY| = |XY_1| + |XY_2| - |XY_1 \cap XY_2| \le |X| + |Y|$, which implies $|XY_1 \cap XY_2| \ge |X| - 2$. Hence, the hole between the two progressions Y_1 and Y_2 has length at most one and Y is an almost progression. Note that this argument requires only $|X| \ge 3$.

Case 2. X is not an r-progression. We may assume that Y is not an r-progression either. Since $\{1,r\}\subset X$, there is a part X_s with $|X_s|\geq 2$.

Assume s < j and let $x = \min X_{s+1}$. Set $\bar{X} = X_s \cup \{x\}$. Let Y_2 be the r-progression containing $y = \max Y$. We must have $|Y_2| = 1$ since otherwise, $|X_sY| \le |\bar{X}Y| - |\{xy, xyr^{-1}\}| \le |X_s| + |Y| - 1$, contradicting that Y is not an r-progression. Now, Y_1 is an r-progression and $|Y_1| \ge 3$. By Case 1, X is an almost progression. Then G is a cyclic group and it is easy to check that both X and Y must be almost r-progressions with a hole in the last but one position. Equivalently, both almost progressions have a hole in the second position with respect to the ratio r^{-1} .

A similar argument works if s=j by taking X^{-1} and Y^{-1} . This completes the proof.

Corollary 13. Let G be a torsion-free group and let X be a finite subset with cardinality $k \ge 4$. Then $|X^2| = 2|X|$ if and only if there are $x, r \in G$, such that the two following conditions hold

- (i) xr = rx.
- (ii) $Xx = \{1, r, \dots, r^k\} \setminus \{c\} \text{ where } c \in \{1, r\}.$

Proof. The conditions are clearly sufficient. Let us prove the necessity. By Corollary 6 we must only consider the case $|X^2|=2|X|$.

Choose $x \in X^{-1}$. By Theorem 10, Xx generates an abelian group H. We have $xX \subset H$, since otherwise there is a partition $xX = X_1 \cup X_2$, with $1 \in X_1$ and $X_2 \not\subset H$. This would imply $|X^2| = |xXXx| \ge |X_1| + k - 1 + |X_2| + k - 1 = 3k - 2 > 2k + 1$, a contradiction.

Hence, we may apply Lemma 12 to obtain (ii).

Since $1 \in Xx$, then H is the subgroup generated by r. From $xX \subset H$, we get $Xx \subset x^{-1}Hx$. Therefore, H is a subgroup of $x^{-1}Hx$. Similarly, $Xx \subset H$ implies the opposite inclusion. It follows that $H = x^{-1}Hx$. Hence, $x^{-1}rx$ generates the cyclic group H. Therefore, either $x^{-1}rx = r$ or $x^{-1}rx = r^{-1}$.

In the first case, the group generated by x and r is abelian and the result holds by Lemma 12.

Suppose that $x^{-1}rx = r^{-1}$. By Lemma 12, xX is an almost progression. If xX is an r-progression, then so is $Xx = xX^{-1}$ and we have $|X^2| = 2|X| - 1$. Otherwise,

by Lemma 12, xX must be an almost progression with a hole. Then, $Xx = xX^{-1}$ is also an almost progression with a hole. If xX has a hole in the second position, then Xx has the hole in the one before the last position, thus contradicting Lemma 12. This proves (i).

5. Acknowledgments

We are grateful to the referees for their helpful comments and remarks, which pointed out some inaccuracies and led to many improvements in the readability of the paper.

References

- L. V. BRAILOVSKY and G. A. FREIMAN: On a product of finite subsets in a torsion-free group, J. Algebra, 130 (1990), 462–476.
- [2] G. Freiman: Structure theory of set addition, *Proc. Conf. Structure theory of set addition*, Marseille, Luminy June 1993, 299–318.
- [3] G. Freiman, A. Heppes, and B. Uhrin: A lower estimation for the cardinality of finite difference sets in Rⁿ, Proc. Conf. Number Theory, Coll. Math. Soc. J. Bolyai 51, North Holland–Bolyai Társulat, Budapest (1989), 125–139.
- [4] Y. O. Hamidoune: An isoperimetric method in additive theory, J. Algebra, 179 (1996), 622–630.
- [5] Y. O. Hamidoune: Some results in additive number theory, preprint, January 1997.
- [6] J. H. B. KEMPERMAN: On complexes in a semigroup, *Indag. Math.*, 18 (1956), 247–254.
- [7] V. F. LEV and P. Y. SMELIANSKI: On addition of two distinct sets of integers, Acta Arith., 70 (1995), 85–91.
- [8] H. B. MANN: Addition theorems: The addition theorems of group theory and number theory, Interscience, New York, 1965.
- [9] M. B. NATHANSON: Additive number theory: Inverse problems and the geometry of sumsets, Springer-Verlag GTM 165, 1996.
- [10] I. Ruzsa: Sum of sets in several dimensions, Combinatorica, 14 (1994), 485–490.
- [11] J. Steinig: On Freiman's theorems concerning the sums of two finite sets of integers, Structure theory of set addition, *Proc. conf. Structure theory of set addition*, Marseille, Luminy (June 1993), 173–185.

540 Y. O. HAMIDOUNE, A. S. LLADÓ, O. SERRA: ON SUBSETS WITH SMALL PRODUCT

[12] G. VOSPER: The critical pairs of subsets of a group of prime order, J. London Math. Soc., 31 (1956), 200–205.

Y. O. Hamidoune

CNRS, Paris, France
yha@ccr.jussieu.fr

A. S. Lladó

Universitat Politècnica de Catalunya, Barcelona, Spain anna@mat.upc.es

O. Serra

Universitat Politècnica de Catalunya, Barcelona, Spain oriol@mat.upc.es